题目内容
【题目】如图,一条笔直的公路l穿过草原,公路边有一消防站A,距离公路5 千米的地方有一居民点B,A、B的直线距离是10 千米.一天,居民点B着火,消防员受命欲前往救火.若消防车在公路上的最快速度是80千米/小时,而在草地上的最快速度是40千米/小时,则消防车在出发后最快经过小时可到达居民点B.(友情提醒:消防车可从公路的任意位置进入草地行驶.)
【答案】
【解析】解:如图所示,公路上行驶的路线是AD,草地上行驶的路线是DB,设AD的路程为x千米,
由已知条件AB=10 千米,BC=5 千米,BC⊥AC,知
AC= =15千米.
则CD=AC﹣AD=(15﹣x)千米,
BD= = km,
设走的行驶时间为y,则
y= + .
整理为关于x的一元二次方程得
3x2+(160y﹣120)x﹣6400y2+1200=0.
因为x必定存在,所以△≥0.即
(160y﹣120)2﹣4×3×(1200﹣6400y2)≥0.
化简得102400y2﹣38400y≥0.
解得y≥ ,
即消防车在出发后最快经过 小时可到达居民点B.
所以答案是: .
【题目】2008年5月12日四川汶川地区发生8.0级特大地震.举国上下通过各种方式表达爱心.某企业决定用p万元援助灾区n所学校,用于搭建帐篷和添置教学设备.根据各校不同的受灾情况,该企业捐款的分配方案是:所有学校得到的捐款数都相等,到第n所学校时捐款恰好分完,捐款的分配方法如下表所示.(其中p,n,a都是正整数)根据以上信息,解答下列问题:
(1)写出p与n的关系式;
(2)当p=125时,该企业能援助多少所学校?
(3)根据震区灾情,该企业计划再次提供不超过20a万元的捐款,按照原来的分配方案援助其它学校.若a由(2)确定,则再次提供的捐款最多又可以援助多少所学校?
分配顺序 | 分配数额(单位:万元) | |
帐篷费用 | 教学设备费用 | |
第1所学校 | 5 | 剩余款的 |
第2所学校 | 10 | 再剩余款的 |
第3所学校 | 15 | 再剩余款的 |
… | … | … |
第(n﹣1)所学校 | 5(n﹣1) | 再剩余款的 |
第n所学校 | 5n | 0 |