题目内容
【题目】如图,△ABC 是等边三角形,D 为 CB 延长线上一点,E 为 BC 延长线上点.
(1)当 BD、BC 和 CE 满足什么条件时,△ADB∽△EAC?
(2)当△ADB∽△EAC 时,求∠DAE 的度数.
【答案】(1)见解析;(2)120°.
【解析】
(1)由等边三角形得 AB=BC=CA、∠ABC=∠ACB=60°,即∠ABD=∠ACE=120°,结合 BC=BDCE 知 ABAC=BDCE,据此可得答案;(2)由△ADB∽△EAC 知∠D=∠CAE,由∠ABC=∠D+∠DAB=60°知∠CAE+∠DAB=60°,根据∠DAE=∠CAE+∠DAB+∠BAC 可得答案.
(1)当 BC=BDCE 时,△ADB∽△EAC,
∵△ABC 是等边三角形,
∴AB=BC=CA,∠ABC=∠ACB=60°,
∴∠ABD=∠ACE=120°,
∵BC=BDCE,
∴ABAC=BDCE,
,
∴△ADB∽△EAC;
(2)∵△ADB∽△EAC,
∴∠D=∠CAE,
∵∠ABC=∠D+∠DAB=60°,
∴∠CAE+∠DAB=60°,
∴∠DAE=∠CAE+∠DAB+∠BAC=60°+60°=120°.
练习册系列答案
相关题目