题目内容

【题目】(1)如图1,直线AB∥CD,点P在两平行线之间,写出∠BAP、∠APC、∠DCP满足的数量关系

(2)如图2,直线ABCD相交于点E,点P∠AEC内一点,AQ平分∠EAP,CQ平分∠ECP,若∠AEC=40°,∠AQC=70°,求∠APC的度数.

(3)如图3,连接AD、CB交于点P,AQ平分∠BAD,CQ平分∠BCD,探究∠ABC、∠AQC、∠ADC满足的关系.

【答案】(1)∠BAP+∠DCP=∠APC;(2)100°;(3)∠ABC+∠ADC=2∠AQC.

【解析】

(1)过PPEAB,利用平行线的性质:两直线平行内错角相等,易得到∠BAP、APC、DCP间关系;

(2)连接EQ并延长至G,连接QP并延长到H,利用角平分线的性质和三角形的外角等于不相邻的两个内角的关系,先得到∠QAP+QCP=30°,再得到∠APC的度数.

(3)利用角平分线的性质,得到∠BAQ=QAD,DCQ=QCB,利用三角形的外角等于不相邻的两个内角,通过∠BEQ、DFQ把∠ABC、AQC、ADC、连接起来得到结论.

:(1)如图1所示,过PPEAB,

ABCD,PECD

PEAB,∴∠BAP=APE,

同理,∠DCP=CPE

∴∠BAP+DCP=APE+CPE=APC

故答案为:∠BAP+DCP=APC,

(2)连接EQ并延长至G,

AQ平分∠EAP,CQ平分∠ECP,

∴∠EAQ=QAP,ECQ=QCP

∵∠AQG=QAE+AEQ,CQG=QCE+CEQ,

∴∠AQG+CQG=QAE+AEQ+QCE+CEQ,

即∠AQC=CEA+QAE+QCE

∵∠AEC=40°,AQC=70°

∴∠QAE+QCE=30°

即∠QAP+QCP=30°

连接QP并延长到H.

∵∠APH=AQP+PAQ,CPH=PQC+PCQ,

∴∠APH+CPH=AQP+PAQ+PQC+PCQ,

即∠APC=CQA+QAP+QCP

∴∠APC=30°+70°=100°.

(3)如图3中,

AQ平分∠BAD,CQ平分∠BCD,

∴∠BAQ=QAD,DCQ=QCB

∵∠BEQ=ABC+BAQ=BCQ+AQC,

∵∠QFD=ADC+QCD=QAD+AQC,

∴∠ABC+BAQ+ADC+QCD=BCQ+AQC+QAD+AQC

即∠ABC+ADC=2AQC.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网