题目内容

【题目】△ABC中,AB=AC=4,BC=5,点D是边AB的中点,点E是边AC的中点,点P是边BC上的动点,∠DPE=∠C,则BP=

【答案】1或4
【解析】解:∵AB=AC=4,点D是边AB的中点,点E是边AC的中点,

∴BD=2,CE=2,∠B=∠C,

∵∠DPE=∠C,

∴∠BPD=180°﹣∠B﹣∠DPE,∠CEP=180°﹣∠EPC﹣∠C,

∴∠DPB=∠PEC,

∴△BPD∽△CPE,

,即

∴PB=1或4,

所以答案是:1或4.

【考点精析】通过灵活运用等腰三角形的性质和相似三角形的判定与性质,掌握等腰三角形的两个底角相等(简称:等边对等角);相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网