题目内容
【题目】如图1,点A坐标为(2,0),以OA为边在第一象限内作等边△OAB,点C为x轴上一动点,且在点A右侧,连接BC,以BC为边在第一象限内作等边△BCD,连接AD交BC于E.
(1)①直接回答:△OBC与△ABD全等吗?
②试说明:无论点C如何移动,AD始终与OB平行;
(2)当点C运动到使AC2=AEAD时,如图2,经过O、B、C三点的抛物线为y1.试问:y1上是否存在动点P,使△BEP为直角三角形且BE为直角边?若存在,求出点P坐标;若不存在,说明理由;
(3)在(2)的条件下,将y1沿x轴翻折得y2,设y1与y2组成的图形为M,函数的图象l与M有公共点.试写出:l与M的公共点为3个时,m的取值.
【答案】(1)①△OBC与△ABD全等;②证明见解析;(2)P(3,)或(﹣2,);(3)﹣≤m<0.
【解析】
试题分析:(1)①利用等边三角形的性质证明△OBC≌△ABD;
②证明∠OBA=∠BAD=60°,可得OB∥AD;
(2)首先证明DE⊥BC,再求直线AE与抛物线的交点就是点P,所以分别求直线AE和抛物线y1的解析式组成方程组,求解即可;
(3)先画出如图3,根据图形画出直线与图形M有个公共点时,两个边界的直线,上方到,将向下平移即可满足l与图形M有3个公共点,一直到直线l与y2相切为止,主要计算相切时,列方程组,确定△≥0时,m的值即可.
试题解析:(1)①△OBC与△ABD全等,理由是:如图1,∵△OAB和△BCD是等边三角形,∴∠OBA=∠CBD=60°,OB=AB,BC=BD,∴∠OBA+∠ABC=∠CBD+∠ABC,即∠OBC=∠ABD,∴△OBC≌△ABD(SAS);
②∵△OBC≌△ABD,∴∠BAD=∠BOC=60°,∴∠OBA=∠BAD,∴OB∥AD,∴无论点C如何移动,AD始终与OB平行;
(2)如图2,∵AC2=AEAD,∴,∵∠EAC=∠DAC,∴△AEC∽△ACD,∴∠ECA=∠ADC,∵∠BAD=∠BAO=60°,∴∠DAC=60°,∵∠BED=∠AEC,∴∠ACB=∠ADB,∴∠ADB=∠ADC,∵BD=CD,∴DE⊥BC,Rt△ABE中,∠BAE=60°,∴∠ABE=30°,∴AE=AB=×2=1,Rt△AEC中,∠EAC=60°,∴∠ECA=30°,∴AC=2AE=2,∴C(4,0),等边△OAB中,过B作BH⊥x轴于H,∴BH= =,∴B(1,),设y1的解析式为:y=ax(x﹣4),把B(1,)代入得: =a(1﹣4),a=﹣,∴设y1的解析式为:y1=﹣x(x﹣4)=,过E作EG⊥x轴于G,Rt△AGE中,AE=1,∴AG=AE=,EG==,∴E(,),设直线AE的解析式为:y=kx+b,把A(2,0)和E(,)代入得:,解得:,∴直线AE的解析式为:,则,解得:,,∴P(3,)或(﹣2,);
(3)如图3,y1==,顶点(2,),∴抛物线y2的顶点为(2,﹣),∴y2=,当m=0时,与图形M两公共点,当y2与l相切时,即有一个公共点,l与图形M有3个公共点,则:,,x2﹣7x﹣3m=0,△=(﹣7)2﹣4×1×(﹣3m)≥0,m≥﹣,∴当l与M的公共点为3个时,m的取值是:﹣≤m<0.