题目内容
【题目】正方形ABCD中,E是BC上一点,F是CD延长线上一点,,连接AE,AF,EF,G为EF中点,连接AG,DG.
(1)如图1:若,,求DG;
(2)如图2:延长GD至M,使,过M作MN∥FD交AF的延长线于N,连接NG,若.求证:.
【答案】(1)DG=;(2),见解析.
【解析】
(1)取CF的中点H,连接GH;先证明△ABE≌△ADF(SAS),在证明△AEF是等腰直角三角形,由GH是Rt△EFC的中位线,在Rt△DGH中即可求解;
(2)过点G作GK⊥MN,交NM的延长线与点K,交CF于点Q,过点G作GT⊥AF,交AF于点T;设BE=a,分别求出,,,再由△AFE是等腰直角三角形,G是EF的中点,求出,证明△NGK≌△NGT(HL),则有TN=NK=MN+MK,∠ANG=30°,可求,得到=MN+NA.
解:(1)取CF的中点H,连接GH,
∵BE=DF,AB=AD,∠ADF=∠B=90°,
∴△ABE≌△ADF(SAS),
∴AF=AE,
∵AB=3,BE=1,
∴AF=AE= ,CF=4,CE=2,
∴EF=2,
∴△AEF是等腰直角三角形,
∵G为EF中点,CF的中点H,
∴GH是Rt△EFC的中位线,
∴GH=CE=1,
∴FH=2,
∴DH=1,
∴DG=;
(2)过点G作GK⊥MN,交NM的延长线与点K,交CF于点Q,
过点G作GT⊥AF,交AF于点T;
设BE=a,
在Rt△ABE中,∠BAE=30°,
∴AB=a,AE=2a,
∴CE=(-1)a,
∵DF=BE,
∴CF=(+1)a,
∵△AFE是等腰直角三角形,G是EF的中点,
∴AG=a,
∵G是EF中点,GQ⊥CF,
∴GQ=CE=a,
∴DQ=CD-CF=a,
∴GQ=DQ,
∴∠DGQ=45°,
∴GK=MK,
∴GM=GA,
∴GK=MK=a,
∵∠FAG=45°,
∴GT=a,
∴Rt△NGK≌Rt△NGT(HL),
∴TN=NK=MN+MK,
∠ANG=∠ANK,
∵∠BAE=30°,
∴∠NAD=30°,
∴∠ANK=60°,
∴∠ANG=30°,
,
,
,
,
即.