题目内容
【题目】如图,在Rt△ABC中,∠ACB=90°,点D在AB上,以AD为直径的⊙O与边BC相切于点E,与边AC相交于点G,且=,连接GO并延长交⊙O于点F,连接BF
(1)求证:①AO=AG,②BF是⊙O的切线.
(2)若BD=6,求图形中阴影部分的面积.
【答案】(1)①见解析;②见解析;(2)S阴影=.
【解析】
(1)①先利用切线的性质判断出∠ACB=∠OEB,再用平行线结合弧相等判断出∠AOG=∠AGO,即可得出结论;
②先判断出△AOG是等边三角形,进而得出∠BOF=∠AOG=60°,进而判断出∠EOB=60°,得出△OFB≌△OEB,得出∠OFB=90°,即可得出结论;
(2)先判断出∠ABC=30°,进而得出OB=2BE,建立方程6+r=2r,继而求出AG=6,AB=18,AC=9,CG=3,再判断出△OGE是等边三角形,得出GE=OE=6,进而利用根据勾股定理求出CE=3,即可得出结论.
解:(1)证明:①如图1,连接OE,
∵⊙O与BC相切于点E,
∴∠OEB=90°,
∵∠ACB=90°,
∴∠ACB=∠OEB,
∴AC∥OE,
∴∠GOE=∠AGO,
∵=,
∴∠AOG=∠GOE,
∴∠AOG=∠AGO,
∴AO=AG;
②由①知,AO=AG,
∵AO=OG,
∴∠AO=OG=AG,
∴△AOG是等边三角形,
∴∠AGO=∠AOG=∠A=60°,
∴∠BOF=∠AOG=60°,
由①知,∠GOE=∠AOG=60°,
∴∠EOB=180°﹣∠AOG﹣∠GOE=180°﹣60°﹣60°=60°,
∴∠FOB=∠EOB,
∵OF=OE,OB=OB,
∴△OFB≌△OEB(SAS),
∴∠OFB=∠OEB=90°,
∴OF⊥BF,
∵OF是⊙O的半径,
∴BF是⊙O的切线;
(2)如图2,连接GE,
∵∠A=60°,
∴∠ABC=90°﹣∠A=30°,
∴OB=2BE,
设⊙O的半径为r,
∵OB=OD+BD,
∴6+r=2r,
∴r=6,
∴AG=OA=6,AB=2r+BD=18,
∴AC=AB=9,∴CG=AC﹣AG=3,
由(1)知,∠EOB=60°,
∵OG=OE,
∴△OGE是等边三角形,
∴GE=OE=6,
根据勾股定理得,CE=,
∴S阴影=S梯形GCEO﹣S扇形OGE=(6+3)×.