题目内容

【题目】如图,在四边形ABCD中,AB=AD,CB=CD,ECD上一点,BEACF,连接DF.

(1)证明:∠BAC=∠DAC.

(2)若∠BEC=∠ABE,试证明四边形ABCD是菱形.

【答案】证明见解析

【解析】

试题由AB=AD,CB=CD结合AC=AC可得△ABC≌△ADC,由此可得∠BAC=∠DAC,再证△ABF≌△ADF即可得到∠AFB=∠AFD,结合∠AFB=∠CFE即可得到∠AFD=∠CFE;

(2)AB∥CD可得∠DCA=∠BAC结合∠BAC=∠DAC可得∠DCA=∠DAC,由此可得AD=CD结合AB=AD,CB=CD可得AB=BC=CD=AD,即可得到四边形ABCD是菱形.

试题解析

(1)△ABC△ADC中,
∵AB=AD,CB=CD,AC=AC,
∴△ABC≌△ADC,
∴∠BAC=∠DAC,
△ABF△ADF中,
∵AB=AD,∠BAC=∠DAC,AF=AF,
∴△ABF≌△ADF,
∴∠AFB=∠AFD.
(2)证明:∵AB∥CD,
∴∠BAC=∠ACD,
∵∠BAC=∠DAC,
∴∠ACD=∠CAD,
∴AD=CD,
∵AB=AD,CB=CD,
∴AB=CB=CD=AD,
四边形ABCD是菱形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网