题目内容
【题目】如图,以O为位似中心将四边形ABCD放大后得到四边形A'B'C'D',若OA=4,OA'=8,则四边形ABCD和四边形A'B'C'D'的周长的比为( )
A. 1∶2 B. 1∶4
C. 2∶1 D. 4∶1
【答案】A
【解析】
由以O为位似中心将四边形ABCD放大后得到四边形A′B′C′D′,若OA=4,OA′=8,可求得四边形ABCD和四边形A′B′C′D′的位似比,继而求得四边形ABCD和四边形A′B′C′D′的周长的比.
解:∵以O为位似中心将四边形ABCD放大后得到四边形A′B′C′D′,OA=4,OA′=8,
∴四边形ABCD和四边形A′B′C′D′的位似比为:OA:OA′=4:8=1:2,
∴四边形ABCD和四边形A′B′C′D′的周长的比为:1:2.
故选:A.
练习册系列答案
相关题目
【题目】如图,已知△ABC内接于⊙O,点C在劣弧AB上(不与点A,B重合),点D为弦BC的中点,DE⊥BC,DE与AC的延长线交于点E,射线AO与射线EB交于点F,与⊙O交于点G,设∠GAB=ɑ,∠ACB=β,∠EAG+∠EBA=γ,
(1)点点同学通过画图和测量得到以下近似数据:
ɑ | 30° | 40° | 50° | 60° |
β | 120° | 130° | 140° | 150° |
γ | 150° | 140° | 130° | 120° |
猜想:β关于ɑ的函数表达式,γ关于ɑ的函数表达式,并给出证明:
(2)若γ=135°,CD=3,△ABE的面积为△ABC的面积的4倍,求⊙O半径的长.