题目内容
【题目】如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示.下列结论:
①abc<0;②3a+c=0;
③当y>0时,x的取值范围是﹣1≤x<3;
④方程ax2+bx+c﹣3=0有两个不相等的实数根;
⑤点(﹣2,y1),(2,y2)都在抛物线上,则有y1<0<y2.
其中结论正确的个数是( ).
A.1个B.2个C.3个D.4个
【答案】D
【解析】
根据抛物线的开口,对称轴,特殊值x=-1可判断①②正确,根据图像可得,当y>0时,是x轴上方的图像,可判断③错误,对方程进行变形,看成抛物线与的交点即可判断④正确,把点(﹣2,y1),(2,y2)描到图像上可判断出⑤正确.
抛物线的开口向下,a<0,对称轴为x=1,∴,∴,抛物线与y轴交于(0,3),∴c>0,∴,故①正确;
当x=-1时,,∵代入得:3a+c=0,故②正确;
根据图像可得,当y>0时,是x轴上方的图像,抛物线过点(﹣1,0),对称轴为x=1,根据抛物线的对称性可得,抛物线过点(3,0),∴,故③错误;
对方程进行变形得:,可看成抛物线与的交点,由图像可得:抛物线与有两个交点,∴方程ax2+bx+c﹣3=0有两个不相等的实数根,故④正确;
把点(﹣2,y1),(2,y2)描到图像上可知,,,∴y1<0<y2,故⑤正确,
故选:D.
【题目】一般地,对于已知一次函数y1=ax+b,y2=cx+d(其中a,b,c,d为常数,且ac<0),定义一个新函数y=,称y是y1与y2的算术中项,y是x的算术中项函数.
(1)如:一次函数y1=x﹣4,y2=﹣x+6,y是x的算术中项函数,即y=.
①自变量x的取值范围是 ,当x= 时,y有最大值;
②根据函数研究的途径与方法,请填写下表,并在图1中描点、连线,画出此函数的大致图象;
x | 8 | 9 | 10 | 12 | 13 | 14 | 16 | 17 | 18 |
y | 0 | 1.2 | 1.6 |
| 2.04 | 2 |
| 1.2 | 0 |
③请写出一条此函数可能有的性质 ;
(2)如图2,已知一次函数y1=x+2,y2=﹣2x+6的图象交于点E,两个函数分别与x轴交于点A,C,与y轴交于点B,D,y是x的算术中项函数,即y=.
①判断:点A、C、E是否在此算术中项函数的图象上;
②在平面直角坐标系中是否存在一点,到此算术中项函数图象上所有点的距离相等,如果存在,请求出这个点;如果不存在,请说明理由.