题目内容
【题目】《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步面见木?”用今天的话说,大意是:如图,DEFG是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门H位于GD的中点,南门K位于ED的中点,出东门15步的A处有一树木,求出南门多少步恰好看到位于A处的树木(即点D在直线AC上)?请你计算KC的长为多少步.
【答案】
【解析】
根据平行证出△CDK∽△DAH,利用相似比即可得出答案.
解:DH=100,DK=100,AH=15,
∵AH∥DK,
∴∠CDK=∠A,
而∠CKD=∠AHD,
∴△CDK∽△DAH,
∴,即,
∴CK=
答:KC的长为步.
【题目】甲、乙两组同学进行一分钟引体向上测试,评分标准规定,做6个以上含6个为合格,做9个以上含9个为优秀,两组同学的测试成绩如下表:
成绩个 | 4 | 5 | 6 | 7 | 8 | 9 |
甲组人 | 1 | 2 | 5 | 2 | 1 | 4 |
乙组人 | 1 | 1 | 4 | 5 | 2 | 2 |
现将两组同学的测试成绩绘制成如下不完整的统计图表:
统计量 | 平均数个 | 中位数 | 众数 | 方差 | 合格率 | 优秀率 |
甲组 | a | 6 | 6 | |||
乙组 | b | 7 |
将条形统计图补充完整;
统计表中的______,______;
人说甲组的优秀率高于乙组优秀率,所以甲组成绩比乙组成绩好,但也有人说乙组成绩比甲组成绩好,请你给出两条支持乙组成绩好的理由.
【题目】某小型加工厂准备每天生产甲、乙两种类型的产品共1000件,原料成本、销售单价,及工人计件工资如表:
甲(元/件) | 乙(元/件) | |
原料成本 | 10 | 8 |
销售单价 | 20 | 16 |
计件工资 | 2 | 1.5 |
设该加工厂每天生产甲型产品x件,每天获得总利润为y元.
(1)求出y与x之间的函数关系式;
(2)若该工厂每天投人总成本不超过10750元,怎样安排甲、乙两种类型的生产量,可使该厂每天所获得的利润最大?并求出最大利润.(总成本=原料成本+计件工资,利润=销售收入一投人总成本)