题目内容
【题目】如图,在平面直角坐标系中,△OAB的顶点A,B的坐标分别为(4,0)、(4,n),若经过点O、A的抛物线y=﹣x2+bx+c的顶点C落在边OB上,则图中阴影部分图形的面积和为 .
【答案】8
【解析】解: ∵抛物线过O、A,
∴c=0,且对称轴为x=2,即﹣ =2,解得b=4,
∴抛物线解析式为y=﹣x2+4x=﹣(x﹣2)2+4,
∴C(2,4),
∵抛物线图象关于直线x=2对称,
∴阴影部分的面积的和实际是△ABC的面积,
∴图中阴影部分的面积的和= S△OAB=S△AOC= ×4×4=8,
所以答案是:8.
【考点精析】掌握二次函数的性质是解答本题的根本,需要知道增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.
练习册系列答案
相关题目
【题目】九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:
时间x(天) | 1≤x<50 | 50≤x≤90 |
售价(元/件) | x+40 | 90 |
每天销量(件) | 200﹣2x |
已知该商品的进价为每件30元,设销售该商品的每天利润为y元.
(1)求出y与x的函数关系式;
(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?
(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.