题目内容
【题目】如图,在⊙O中,直径AB垂直于弦CD,垂足为E,连结AC,将△ACE沿AC翻转得到△ACF,直线FC与直线AB相交于点G.
(1)求证:FG是⊙O的切线;
(2)若B为OG的中点,CE=,求⊙O的半径长;
(3)①求证:∠CAG=∠BCG;
②若⊙O的面积为4π,GC=2,求GB的长.
【答案】(1)见解析;(2)2;(3) ①见解析; ②2.
【解析】
(1)连接OC,由OA=OC得∠OAC=∠OCA,根据折叠的性质得∠OAC=∠FAC,∠F=∠AEC=90°,则∠OCA=∠FAC,于是可判断OC∥AF,根据平行线的性质得∠OCG=∠F=90°,然后根据切线的性质得直线FC与⊙O相切;
(2)首先证明△OBC是等边三角形,在Rt△OCE中,根据OC2=OE2+CE2,构建方程即可解决问题;
(3)①根据等角的余角相等证明即可;
②利用圆的面积公式求出OB,由△GCB∽△GAC,可得,由此构建方程即可解决问题;
(1)证明:连结,则,
又,
即直线垂直于半径,且过的外端点
是切线.
(2)点是斜边的中点,,
是等边三角形,且是的高。
在,,即,
解得,即的半径为2.
(3)①,,且,
.
②,,由①知:∽,
,即,,
解得:.