题目内容
【题目】(1)问题背景
如图①,BC是⊙O的直径,点A在⊙O上,AB=AC,P为BmC上一动点(不与B,C重合),求证: PA=PB+PC.
小明同学观察到图中自点A出发有三条线段AB,AP,AC,且AB=AC,这就为旋转作了铺垫.于是,小明同学有如下思考过程:
第一步:将△PAC绕着点A顺时针旋转90°至△QAB(如图①);
第二步:证明Q,B,P三点共线,进而原题得证.
请你根据小明同学的思考过程完成证明过程.
(2)类比迁移
如图②,⊙O的半径为3,点A,B在⊙O上,C为⊙O内一点,AB=AC,AB⊥AC,垂足为A,求OC的最小值.
(3)拓展延伸
如图③,⊙O的半径为3,点A,B在⊙O上,C为⊙O内一点,AB=AC,AB⊥AC,垂足为A,则OC的最小值为 .
【答案】(1)证明见解析;(2)OC最小值是3﹣3;(3).
【解析】试题分析:(1)将△PAC绕着点A顺时针旋转90°至△QAB(如图①),只要证明△APQ是等腰直角三角形即可解决问题;
(2)如图②中,连接OA,将△OAC绕点O顺时针旋转90°至△QAB,连接OB,OQ,在△BOQ中,利用三边关系定理即可解决问题;
(3)如图③构造相似三角形即可解决问题.作AQ⊥OA,使得AQ=OA,连接OQ,BQ,OB.由△QAB∽OAC,推出BQ=OC,当BQ最小时,OC最小;
试题解析:(1)将△PAC绕着点A顺时针旋转90°至△QAB(如图①);
∵BC是直径,∴∠BAC=90°,
∵AB=AC,∴∠ACB=∠ABC=45°,
由旋转可得∠QBA=∠PCA,∠ACB=∠APB=45°,PC=QB,
∵∠PCA+∠PBA=180°,∴∠QBA+∠PBA=180°,∴Q,B,P三点共线,
∴∠QAB+∠BAP=∠BAP+∠PAC=90°,∴QP2=AP2+AQ2=2AP2,
∴QP=AP=QB+BP=PC+PB,∴AP=PC+PB.
(2)如图②中,连接OA,将△OAC绕点A顺时针旋转90°至△QAB,连接OB,OQ,
∵AB⊥AC,∴∠BAC=90°,
由旋转可得 QB=OC,AQ=OA,∠QAB=∠OAC,∴∠QAB+∠BAO=∠BAO+∠OAC=90°,
∴在Rt△OAQ中,OQ=3,AO=3 ,∴在△OQB中,BQ≥OQ﹣OB=3﹣3 ,
即OC最小值是3﹣3;
(3)如图③中,作AQ⊥OA,使得AQ=OA,连接OQ,BQ,OB.
∵∠QAO=∠BAC=90°,∠QAB=∠OAC,∵=,
∴△QAB∽OAC,∴BQ=OC,
当BQ最小时,OC最小,易知OA=3,AQ=4,OQ=5,BQ≥OQ﹣OB,∴OQ≥2,]
∴BQ的最小值为2,
∴OC的最小值为×2=,
故答案为.