题目内容
【题目】某天上午出租车司机小张在东西走向的大街上营运,如果规定向东为正,向西为负,他这天上午所接送六位乘客的行驶里程(单位:km)如下表:(等待乘客时,空车里程忽略不计)
乘客顺序 | 第一位 | 第二位 | 第三位 | 第四位 | 第五位 | 第六位 |
行驶里程 | -2 | +8 | -1 | +1 | -9 | -2 |
(1)将最后一位乘客送到目的地时,小张在出发地什么位置?
(2)若汽车耗油量为0.06,这天上午小张接送乘客,出租车共耗油多少升?
(3)若出租车起步价为5元,起步里程为3km(包括3km),超过部分1.2元/km,问小张这天上午共收车费多少元?
【答案】(1)小张在起始的西5km的位置;(2)出租车共耗油1.02升;(3)31.32元.
【解析】
(1)先将这几个数相加,若和为正,则在出发点的东方;若和为负,则在出发点的西方;
(2)将这几个数的绝对值相加,再乘以耗油量,即可得出答案;
(3)不超过3km的按5元计算,超过3km的在5元的基础上,再加上超过部分乘以1.2元,即可.
解:(1)-2+8-1+1-9-2=-5.
答:小张在起始的西5km的位置;
(2)|-2|+|+8|+|-1|+|+1|+|-9|+|-2|
=2+8+1+1+9+2
=23,
23×0.06=1.38升.
答:出租车共耗油1.02升;
(3)6×5+[(8-3)+(9-3)]×1.2=31.32元.
答:小李这天上午共得车费31.32元.
【题目】如图,一次函数y=x+4的图像与反比例函数(k为常数且k≠0)的图像交于A(-1,a),B(b,1)两点,与x轴交于点C.
(1)求此反比例函数的表达式;
(2)若点P在x轴上,且,求点P的坐标.
【题目】某厂按用户的月需求量x(件)完成一种产品的生产,其中x>0.每件的售价为18万元,每件的成本y(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x(件)成反比.经市场调研发现,月需求量x与月份n(n为整数,1≤n≤12)符合关系式x=2n2﹣2kn+9(k+3)(k为常数),且得到了表中的数据
月份n(月)1 | 1 | 2 |
成本y(万元/件) | 11 | 12 |
需求量x(件/月) | 120 | 100 |
(1)直接写出k的值;
(2)求y与x满足的关系式,请说明一件产品的利润能否是12万元;
(3)推断是否存在某个月既无盈利也不亏损.