题目内容
如图,在△ABC中,∠ABC与∠ACB的角平分线交于点O,且∠A=α,则∠BOC的度数是( )
A.180°-
| B.90°+
| C.90°-
| D.
|
∵∠A=α,
∴∠ABC+∠ACB=180°-α,
∵BO、CO分别是∠ABC与∠ACB的角平分线,
∴∠OBC+∠OCB=
∠ABC+
∠ACB
=
(∠ABC+∠ACB)
=
(180°-α)
=90°-
α,
∴∠BOC=180°-(∠OBC+∠OCB)=90°+
α.
故选B.
∴∠ABC+∠ACB=180°-α,
∵BO、CO分别是∠ABC与∠ACB的角平分线,
∴∠OBC+∠OCB=
1 |
2 |
1 |
2 |
=
1 |
2 |
=
1 |
2 |
=90°-
1 |
2 |
∴∠BOC=180°-(∠OBC+∠OCB)=90°+
1 |
2 |
故选B.
练习册系列答案
相关题目