题目内容
【题目】如图,直线PC交⊙O于A,C两点,AB是⊙O的直径,AD平分∠PAB交⊙O于点D,过D作DE垂直PA,垂足为E.
(1)求证:DE是⊙O的切线;
(2)若AE=1,AC=4,求直径AB的长.
【答案】(1)见解析;(2)6.
【解析】分析:
(1)如下图,连接OD,由已知条件易得∠DAE=∠DAO,∠DAO=∠ADO,∠DAE+∠ADE=90°,由此可得∠ADO+∠ADE=90°=∠ODE,从而可得DE是⊙O的切线;
(2)如下图,过点O作OF⊥AC于点F,则易得AF=AC=2,四边形OFED是矩形,从而可得OD=EF=AE+AF=1+2=3,由此可得AB=2OD=6.
详解:
(1)如下图,连接OD,
∵AD平分∠PAB,
∴∠PAD=∠OAD,
∵OA=OD,
∴∠ODA=∠OAD,
∴∠PAD=∠ODA,
∵DE⊥PA,
∴∠DEA=∠EAD+∠EDA=90°,
∴∠ODA+∠EDA=90°,
∴DE是⊙O的切线
(2)作OF⊥AC,
∴AF=CF=2,∠OFE=90°,
又∵∠DEA=∠ODE=90°,
∴四边形OFED为矩形,
∴OD=EF=AE+AF=3,
∴AB=2OD=6.
练习册系列答案
相关题目
【题目】某商店购进一种商品,每件商品进价30元.试销中发现这种商品每天的销售量y(件)
与每件销售价x(元)的关系数据如下:
x | 30 | 32 | 34 | 36 |
y | 40 | 36 | 32 | 28 |
(1)已知y与x满足一次函数关系,根据上表,求出y与x之间的关系式(不写出自变量x的取值范围);
(2)如果商店销售这种商品,每天要获得150元利润,那么每件商品的销售价应定为多少元?
(3)设该商店每天销售这种商品所获利润为w(元),求出w与x之间的关系式,并求出每件商品销售价定为多少元时利润最大?