题目内容
【题目】如图,已知抛物线y=x2+bx+c过点A(3, 0)、点B(0, 3).点M(m, 0)在线段OA上(与点A、O不重合),过点M作x轴的垂线与线段AB交于点P,与抛物线交于点Q,联结BQ.
(1)求抛物线表达式;
(2)联结OP,当∠BOP=∠PBQ时,求PQ的长度;
(3)当△PBQ为等腰三角形时,求m的值.
【答案】(1) y=x2+2x+3;(2) ;(3) m的值为2、或1.
【解析】
(1)将点A (3, 0)、点B (0, 3) 分别代入抛物线解析式y=x2+bx+c,化简求出b,c的值即可;
(2)根据∠BOP =∠PBQ且MQ∥OB,可证△OBP ∽△BPQ,可设Q(x,x2+2x+3),求出直线AB的解析式,则可得P 的坐标为(x,3-x),可得BP=x,OB=3,PQ=x2+3x,利用相似三角形的对应边成立比例即可求解;
(3)分三种情况讨论:①当BQ=PQ时,②当BP=PQ时,③当BP=BQ时,然后分别求解即可.
(1)∵将点A (3, 0)、点B (0, 3) 分别代入抛物线解析式y=x2+bx+c得
,解之得:
∴抛物线的解析式为y=x2+2x+3
(2)
∵∠BOP =∠PBQ且MQ∥OB
∴∠OBP =∠BPQ
∴△OBP ∽△BPQ
设Q(x,x2+2x+3)
∵P点在直线AB上,并A (3, 0)、B (0, 3),
则直线AB的解析式为:
∴ P (x,3-x)
∴BP=x,OB=3,PQ=x2+3x
∴ 即
∴(0舍去)
∴
(3)∵M(m,0),P(m,3-m),Q(m,m2+2m+3)
∴BP=m,PQ=m2+3m且∠BPQ=45°
∴当△BPQ为等腰三角形时,存在如下情况:
①如图1,当BQ=PQ时,即∠PBQ=∠BPQ=45°
∴△BPQ为等腰直角三角形 ∴m2+2m+3=3
∴m=2
②当BP=PQ时,即m=m2+3m,即(0舍去)
③如图2,当BP=BQ时,∠BQP=∠BPQ=45°
根据,,可得
则有 ,
∴m=1
综上所述,m的值为2、或1.