题目内容

【题目】如图,ABCD的对角线AC、BD交于点O,EF过点O且与BC、AD分别交于点E、F.试猜想线段AE、CF的关系,并说明理由

【答案】AE与CF的关系是平行且相等.

【解析】

试题分析:先猜出AE与CF的关系,然后说明理由即可,由题意可以推出四边形AECF是平行四边形,从而可以推出AE与CF的关系.

试题解析:AE与CF的关系是平行且相等.

理由:∵在,ABCD中,∴OA=OC,AF∥EC,∴∠OAF=∠OCE,在△OAF和△OCE中,∵∠OAF=OCE,OA=OCA,EOC=FOA,∴△OAF≌△OCE(ASA),∴AF=CE,又∵AF∥CE,∴四边形AECF是平行四边形,∴AE∥CF且AE=CF,即AE与CF的关系是平行且相等.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网