题目内容
【题目】现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):
步数 | 频数 | 频率 |
|
|
|
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
请根据以上信息,解答下列问题:
(1)写出的值并补全频数分布直方图;
(2)本市约有名教师,用调查的样本数据估计日行走步数超过步(包含步)的教师有多少名?
(3)若在名被调查的教师中,选取日行走步数超过步(包含步的两名教师与大家分享心得,求被选取的两名教师恰好都在步(包含步)以上的概率.
【答案】(1)0.16,0.24,10,2;补图见解析;(2)11340;(3)
【解析】
试题分析:(1)根据频率=频数÷总数可得答案;
(2)用样本中超过12000步(包含12000步)的频率之和乘以总人数可得答案;
(3)画树状图列出所有等可能结果,根据概率公式求解可得.
试题解析:(1)a=8÷50=0.16,b=12÷50=0.24,c=50×0.2=10,d=50×0.04=2,
补全频数分布直方图如下:
(2)37800×(0.2+0.06+0.04)=11340,
答:估计日行走步数超过12000步(包含12000步)的教师有11340名;
(3)设16000≤x<20000的3名教师分别为A、B、C,
20000≤x<24000的2名教师分别为X、Y,
画树状图如下:
由树状图可知,被选取的两名教师恰好都在20000步(包含20000步)以上的概率为.
【题目】某校八年级全体男同学参加了跳绳比赛,从中随机抽取某班男同学的跳绳成绩,制作了如下频数分布表:
组别 | 99.5﹣109.5 | 109.5﹣119.5 | 119.5﹣129.5 | 129.5﹣139.5 | 139.5﹣149.5 | 149.5﹣159.5 |
频数 | 2 | 4 | 8 | 7 | 3 | 1 |
根据上面统计信息,解答下列问题:
(1)补全频数分布直方图.
(2)班级准备对跳绳成绩优秀的男同学进行奖励,奖励人数占班级男同学的20%,该班张辉同学的成绩为140个,通过计算判断张辉能否获得奖励.
(3)八年级共有200名男同学,若规定男同学的跳绳成绩在120个以上(含120个)为合格,估计该校八年级男同学成绩合格的人数.