题目内容
【题目】如图,抛物线y=﹣x2+x+2与x轴交于点A,B,与y轴交于点C.
(1)试求A,B,C的坐标;
(2)将△ABC绕AB中点M旋转180°,得到△BAD.3
①求点D的坐标;
②判断四边形ADBC的形状,并说明理由;
(3)在该抛物线对称轴上是否存在点P,使△BMP与△BAD相似?若存在,请直接写出所有满足条件的P点的坐标;若不存在,请说明理由.
【答案】(1) A(﹣1,0),B(4,0),C(0,2);(2)①D(3,﹣2);②四边形ADBC是矩形;理由见解析,(3) 点P的坐标为:(1.5,1.25),(1.5,﹣1.25),(1.5,5),(1.5,﹣5).
【解析】
试题分析:(1)直接利用y=0,x=0分别得出A,B,C的坐标;
(2)①利用旋转的性质结合三角形各边长得出D点坐标;
②利用平行四边形的判定方法结合勾股定理的逆定理得出四边形ADBC的形状;
(3)直接利用相似三角形的判定与性质结合三角形各边长进而得出答案.
试题解析:(1)当y=0时,0=﹣x2+x+2,
解得:x1=﹣1,x2=4,
则A(﹣1,0),B(4,0),
当x=0时,y=2,
故C(0,2);
(2)①过点D作DE⊥x轴于点E,
∵将△ABC绕AB中点M旋转180°,得到△BAD,
∴DE=2,AO=BE=1,OM=ME=1.5,
∴D(3,﹣2);
②∵将△ABC绕AB中点M旋转180°,得到△BAD,
∴AC=BD,AD=BC,
∴四边形ADBC是平行四边形,
∵AC=,BC=,AB=5,
∴AC2+BC2=AB2,
∴△ACB是直角三角形,
∴∠ACB=90°,
∴四边形ADBC是矩形;
(3)由题意可得:BD=,AD=2,
则,
当△BMP∽△ADB时,
,
可得:BM=2.5,
则PM=1.25,
故P(1.5,1.25),
当△BMP1∽△ABD时,
P1(1.5,﹣1.25),
当△BMP2∽△BDA时,
可得:P2(1.5,5),
当△BMP3∽△BDA时,
可得:P3(1.5,﹣5),
综上所述:点P的坐标为:(1.5,1.25),(1.5,﹣1.25),(1.5,5),(1.5,﹣5).
【题目】现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):
步数 | 频数 | 频率 |
|
|
|
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
请根据以上信息,解答下列问题:
(1)写出的值并补全频数分布直方图;
(2)本市约有名教师,用调查的样本数据估计日行走步数超过步(包含步)的教师有多少名?
(3)若在名被调查的教师中,选取日行走步数超过步(包含步的两名教师与大家分享心得,求被选取的两名教师恰好都在步(包含步)以上的概率.