题目内容
如图,在△ABC中,E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF=( )
A.1 | B.2 | C.3 | D.4 |
B
试题分析:∵点D是AC的中点,
∴AD=AC,
∵S△ABC=12,
∴S△ABD=S△ABC=×12=6.
∵EC=2BE,S△ABC=12,
∴S△ABE=S△ABC=×12=4,
∵S△ABD-S△ABE=(S△ADF+S△ABF)-(S△ABF+S△BEF)=S△ADF-S△BEF,
即S△ADF-S△BEF=S△ABD-S△ABE=6-4=2.
故选B.
练习册系列答案
相关题目