题目内容

如图,在梯形ABCD中,ABCD,AB=7,CD=1,AD=BC=5.点M,N分别在边AD,BC上运动,并保持MNAB,ME⊥AB,NF⊥AB,垂足分别为E,F.
(1)求梯形ABCD的面积;
(2)求四边形MEFN面积的最大值;
(3)试判断四边形MEFN能否为正方形?若能,求出正方形MEFN的面积;若不能,请说明理由.
(1)分别过D,C两点作DG⊥AB于点G,CH⊥AB于点H.
∵ABCD,
∴DG=CH,DGCH.
∴四边形DGHC为矩形,GH=CD=1.
∵DG=CH,AD=BC,∠AGD=∠BHC=90°,
∴△AGD≌△BHC(HL).
∴AG=BH=
AB-GH
2
=
7-1
2
=3

∵在Rt△AGD中,AG=3,AD=5,
∴DG=4.
∴S梯形ABCD=
(1+7)×4
2
=16.

(2)∵MNAB,ME⊥AB,NF⊥AB,
∴ME=NF,MENF.
∴四边形MEFN为矩形.
∵ABCD,AD=BC,
∴∠A=∠B.
∵ME=NF,∠MEA=∠NFB=90°,
∴△MEA≌△NFB(AAS).
∴AE=BF.
设AE=x,则EF=7-2x.
∵∠A=∠A(公共角),∠MEA=∠DGA=90°,
∴△MEA△DGA.
AE
AG
=
ME
DG

∴ME=
4
3
x

∴S矩形MEFN=ME•EF=
4
3
x(7-2x)=-
8
3
(x-
7
4
2+
49
6

当x=
7
4
时,ME=
7
3
<4,
∴四边形MEFN面积的最大值为
49
6


(3)能.
由(2)可知,设AE=x,则EF=7-2x,ME=
4
3
x.
若四边形MEFN为正方形,则ME=EF.
4x
3
=7-2x.
解得x=
21
10

∴EF=7-2x=7-2×
21
10
=
14
5
<4.
∴四边形MEFN能为正方形,其面积为S正方形MEFN=(
14
5
2=
196
25
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网