题目内容
【题目】问题背景:
如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠D=90°.E、F分别是BC、CD上的点,且∠EAF=60°.为了探究图中线段BE,EF,FD之间的数量关系,小红的想法是:在EB的延长线上取一点G,使得BG=DF,连接AG,证明△ABG≌△ADF;再证明△AGE≌△AFE,从而得到结论,她的结论是_____________.
探索延伸:
如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由.
实际应用:
如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西40°的A处,舰艇乙在指挥中心南偏东80°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以50海里/小时的速度,同时舰艇乙沿北偏东50°的方向以70海里/小时的速度各自前进2小时后,在指挥中心观测到甲、乙两舰艇分别到达E,F处,两舰艇与指挥中心之间的夹角为70°,则此时两舰艇之间的距离为______海里.
【答案】问题背景:EF=BE+DF;探索延伸:EF=BE+DF仍然成立;实际应用:240海里.
【解析】
问题背景:延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题;
探索延伸:延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题;
结论应用:连接EF,延长AE、BF相交于点C,然后与(2)同理可证;
解:问题背景:EF=BE+DF,证明如下:
在△ABE和△ADG中,
∴△ABE≌△ADG(SAS),
∴AE=AG,∠BAE=∠DAG,
∵∠EAF=∠BAD,
∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF,
∴∠EAF=∠GAF,
在△AEF和△GAF中,
∴△AEF≌△AGF(SAS),
∴EF=FG,
∵FG=DG+DF=BE+DF,
∴EF=BE+DF;
故答案为:EF=BE+DF;
探索延伸:结论EF=BE+DF仍然成立;
理由:延长FD到点P.使DP=BE.连结AP,如图2,
在△ABE和△ADP中,
∴△ABE≌△ADP(SAS),
∴AE=AP,∠BAE=∠DAP,
∵∠EAF=∠BAD,
∴∠PAF=∠DAP+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF,
∴∠EAF=∠PAF,
在△AEF和△PAF中,
∴△AEF≌△APF(SAS),
∴EF=FP,
∵FP=DP+DF=BE+DF,
∴EF=BE+DF;
结论应用:如图3,连接EF,延长AE、BF相交于点C,
∵∠AOB=40°+90°+(90°-80°)=140°,∠EOF=70°,
∴∠EOF=∠AOB,
又∵OA=OB,∠OAC+∠OBC=(90°-40°)+(80°+50°)=180°,
∴符合探索延伸中的条件,
∴结论EF=AE+BF成立,
即EF=2×(50+70)=240海里.
答:此时两舰艇之间的距离是240海;