题目内容
【题目】矩形纸片ABCD,AB=9,BC=6,在矩形边上有一点P,且DP=3.将矩形纸片折叠,使点B与点P重合,折痕所在直线交矩形两边于点E,F,则EF长为 .
【答案】6 或2
【解析】解:如图1,当点P在CD上时, ∵PD=3,CD=AB=9,
∴CP=6,∵EF垂直平分PB,
∴四边形PFBE是正方形,EF过点C,
∴EF=6 ,
如图2,当点P在AD上时,
过E作EQ⊥AB于Q,
∵PD=3,AD=6,
∴AP=3,
∴PB= = =3 ,
∵EF垂直平分PB,
∴∠1=∠2,
∵∠A=∠EQF,
∴△ABP∽△EFQ,
∴ ,
∴ ,
∴EF=2 ,
综上所述:EF长为6 或2 .
故答案为:6 或2 .
如图1,当点P在CD上时,由折叠的性质得到四边形PFBE是正方形,EF过点C,根据勾股定理即可得到结果;如图2当点P在AD上时,过E作EQ⊥AB于Q,根据勾股定理得到PB= = =3 ,推出△ABP∽△EFQ,列比例式即可得到结果.
练习册系列答案
相关题目