题目内容
【题目】如图1,两个不全等的等腰直角三角形OAB和OCD叠放在一起,并且有公共的直角顶点O.
(1)在图1中,你发现线段AC,BD的数量关系是 ,直线AC,BD相交成 度角.
(2)将图1中的△OAB绕点O顺时针旋转90°角,这时(1)中的两个结论是否成立?请做出判断并说明理由.
(3)将图1中的△OAB绕点O顺时针旋转一个锐角,得到图3,这时(1)中的两个结论是否成立?请作出判断并说明理由.
【答案】(1)AC=BD,90;
(2)成立,理由见解析;
(3)成立,理由见解析.
【解析】试题分析:(1)由图可知线段AC,BD相等,且直线AC,BD相交成90°角.(2)以上关系仍成立.延长CA交BD于点E,根据勾股定理可证得AC=BD,即可证明△AOC≌△BOD,根据两全等三角形对应角的关系,即可证明CE⊥BD.(3)结论仍成立.延长CA交OD于E,交BD于F,可证得△COA≌△DOB,同上即可得结论.
试题解析:(1)在图1中,线段AC,BD的数量关系是相等,直线AC,BD相交成90度角;
(2)(1)中结论仍成立;
证明如下:如图延长CA交BD于点E,
∵等腰直角三角形OAB和OCD,
∴OA=OB,OC=OD,
∵AC2=AO2+CO2,BD2=OD2+OB2,
∴AC=BD;
∴△DOB≌△COA(SSS),
∴∠CAO=∠DBO,∠ACO=∠BDO,
∵∠ACO+∠CAO=90°,
∴∠ACO+∠DBO=90°,则∠AEB=90°,即直线AC,BD相交成90°角。
(3)结论仍成立;如图延长CA交OD于E,交BD于F,
∵∠COD=∠AOB=90°,
∴∠COA+∠AOD=∠AOD+∠DOB,
即:∠COA=∠DOB,
∵CO=OD,OA=OB,
∴△COA≌△DOB(SAS),
∴AC=BD,∠ACO=∠ODB;
∵∠CEO=∠DEF,
∴∠COE=∠EFD=90°,
∴AC⊥BD,即直线AC,BD相交成90°角。