题目内容
【题目】已知:如图点在正比例函数图象上,点坐标为,连接,,点是线段的中点,点在线段上以每秒2个单位的速度由点向点运动,点在线段上由点向点运动,两点同时运动,同时停止,运动时间为秒.
(1)正比例函数的关系式为 ;
(2)当秒,且时,求点的坐标;
(3)连接,在点运动过程中,与是否全等?如果全等,请求出点的运动速度;如果不全等,请说明理由.
【答案】(1);(2);(3)当点的运动速度是每秒个单位或每秒个单位时,与全等.
【解析】
(1)设正比例函数的解析式为y=kx,然后将点A的坐标代入求解即可;
(2)过点Q作QH⊥x轴于点H,由t=1,可知BP=2,从而可求得OP=10,然后根据三角形的面积公式可求出QH的长,又点Q在正比例函数图象上,从而可得出点Q的坐标;
(3)由OA=AB=10得到∠QOP=∠CBP,由△OPQ与△BPC全等可知:OP=BC=5,OQ=BP或OQ=BC=5,OP=PB,再分别求出AQ的长,从而可求得点Q的运动速度.
解:(1)设正比例函数的解析式为y=kx,
把A(6,8)代入得:8=6k.
解得:k=.
故答案为:y=x;
(2)当t=1时,BP=2,OP=10.
如图,过点Q作QH⊥x轴于点H,
∵S△OPQ=OPQH=6,∴QH=.
把Q(x,)代入y=x中,得x=,
∴点Q的坐标为(,);
(3)∵AO=AB=10,点C是线段AB的中点,
∴BC=5,∠QOP=∠CBP.
若△OPQ与△BPC全等,
则有OP=BC=5,OQ=BP或OQ=BC=5,OP=PB.
设Q点的运动速度为v个单位/秒,
①OP=BC=5,OQ=BP时,
∵OP=5,∴12-2t=5.解得t=.
∴OQ=BP=2×=7.
∴AQ=10-7=3.
∴v=3,解得v=.
∴点Q运动的速度为个单位/秒.
②当OQ=BC=5,OP=PB=6时,
由OP=PB=OB=6可知:2t=6,
解得:t=3.
∵OQ=5,∴AQ=OA-OQ=10-5=5.
∴3v=5,解得v=.
∴点Q运动的速度为个单位/秒.
综上所述:当点Q的运动速度是每秒个单位或每秒个单位时,△OPQ与△BPC全等.