题目内容
【题目】某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:
(1)求出y与x之间的函数关系式;
(2)写出每天的利润W与销售单价x之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?
【答案】(1)y=-x+180;(2)售价定为140元/件时,每天最大利润W=1600元.
【解析】(1)设y与x之间的函数关系式为y=kx+b(k≠0),根据所给函数图象列出关于kb的关系式,求出k、b的值即可;
(2)把每天的利润W与销售单价x之间的函数关系式化为二次函数顶点式的形式,由此关系式即可得出结论.
解:(1)设y与x之间的函数关系式为y=kx+b(k≠0),由所给函数图象可知,
,解得
.
故y与x的函数关系式为y=﹣x+180;
(2)∵y=﹣x+180,
∴W=(x﹣100)y=(x﹣100)(﹣x+180)
=﹣x2+280x﹣18000
=﹣(x﹣140)2+1600,
∵a=﹣1<0,
∴当x=140时,W最大=1600,
∴售价定为140元/件时,每天最大利润W=1600元.
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】阅读材料:
工厂加工某种新型材料,首先要将材料进行加温处理,使这种材料保持在一定的温度范围内方可进行继续加工处理这种材料时,材料温度
是时间
的函数
下面是小明同学研究该函数的过程,把它补充完整:
在这个函数关系中,自变量x的取值范围是______.
如表记录了17min内10个时间点材料温度y随时间x变化的情况:
时间 | 0 | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | |
温度 | 15 | 24 | 42 | 60 | m |
上表中m的值为______.
如图,在平面直角坐标系xOy中,已经描出了上表中的部分点
根据描出的点,画出该函数的图象.
根据列出的表格和所画的函数图象,可以得到,当
时,y与x之间的函数表达式为______,当
时,y与x之间的函数表达式为______.
根据工艺的要求,当材料的温度不低于
时,方可以进行产品加工,在图中所示的温度变化过程中,可以进行加工的时间长度为______min.