题目内容

是否存在这样的实数k,使得二次方程x2+(2k-1)x-(3k+2)=0有两个实数根,且两根都在2与4之间?如果有,试确定k的取值范围;如果没有,试述理由.
这样的k值不存在,理由如下:设y=f(x)=x2+(2k-1)x-(3k+2)并作出如图所示图象,则
△=(2k-1)2+4(3k+2)>0
f(2)=4+2(2k-1)-(3k+2)>0
f(4)=16+4(2k-1)-(3k+2)>0
2<-
b
2a
=-k+
1
2
<4

整理得,
4k2+8k+9>0①
k>0②
k>-2③
k>-
7
2
k<-
3
2

由②⑤可知,此不等式组无解,故k值不存在.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网