题目内容
【题目】如图,在平面直角坐标系中,抛物线y=x2﹣x﹣与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,对称轴与x轴交于点D,点E(4,n)在抛物线上.
(1)求直线AE的解析式;
(2)点P为直线CE下方抛物线上的一点,连接PC,PE.当△PCE的面积最大时,连接CD,CB,点K是线段CB的中点,点M是CP上的一点,点N是CD上的一点,求KM+MN+NK的最小值;
(3)点G是线段CE的中点,将抛物线y=x2﹣x﹣沿x轴正方向平移得到新抛物线y′,y′经过点D,y′的顶点为点F.在新抛物线y′的对称轴上,是否存在一点Q,使得△FGQ为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.
【答案】(1)y=x+.(2)3,(3)点Q的坐标为(3,),Q′(3,)或(3,2)或(3,﹣).
【解析】
试题分析:(1)抛物线的解析式可以变天为y=(x+1)(x-3),从而可得到点A和点B的坐标,然后再求得点E的坐标,设直线AE的解析式为y=kx+b,将点A和点E的坐标代入,求得k和b的值,从而得到AE的解析式;
(2)设直线CE的解析式为y=mx-,将点E的坐标代入求得m的值,从而得到直线CE的解析式,过点P作PF∥y轴,交CE于点F,设点P的坐标为(x,x2﹣x﹣),则点F(x,x-),则FP=﹣x2+.由三角形的面积公式得:ΔEPC的面积=-x2+x,利用二次函数的媒体人富士康得x的值,从而求得点P的坐标,作点K关于CD和CP的对称点G、H,连接G、H交CD和CP于N、M,然后利用轴对称的性质可得到点G和H的坐标,当点O、N、M、H在一条直线上时,KM+MN+NK有最小值,最小值=GH。
(3)由平移后的抛物线经过点D,可得到点F的坐标,利用中点坐标公式可求得点G的坐标,然后分为QG=FG、QG=QF、FQ=FQ三种情况求解即可.
试题解析:(1)∵y=x2﹣x﹣,
∴y=(x+1)(x﹣3).
∴A(﹣1,0),B(3,0).
当x=4时,y=.
∴E(4,).
设直线AE的解析式为y=kx+b,将点A和点E的坐标代入得:
,
解得:k=,b=.
∴直线AE的解析式为y=x+.
(2)设直线CE的解析式为y=mx﹣,将点E的坐标代入得:4m﹣=,解得:m=.
∴直线CE的解析式为y=x﹣.
过点P作PF∥y轴,交CE与点F.
设点P的坐标为(x,x2﹣x﹣),则点F(x,x﹣),
则FP=(x﹣)﹣(x2﹣x﹣)=x2+x.
∴△EPC的面积=×(x2+x)×4=﹣x2+x.
∴当x=2时,△EPC的面积最大.
∴P(2,﹣).
如图2所示:作点K关于CD和CP的对称点G、H,连接G、H交CD和CP与N、M.
∵K是CB的中点,
∴k(,﹣).
∵点H与点K关于CP对称,
∴点H的坐标为(,﹣).
∵点G与点K关于CD对称,
∴点G(0,0).
∴KM+MN+NK=MH+MN+GN.
当点O、N、M、H在条直线上时,KM+MN+NK有最小值,最小值=GH.
∴GH==3.
∴KM+MN+NK的最小值为3.
(3)如图3所示:
∵y′经过点D,y′的顶点为点F,
∴点F(3,﹣).
∵点G为CE的中点,
∴G(2,).
∴FG=.
∴当FG=FQ时,点Q(3,),Q′(3,).
当GF=GQ时,点F与点Q″关于y=对称,
∴点Q″(3,2).
当QG=QF时,设点Q1的坐标为(3,a).
由两点间的距离公式可知:a+=,解得:a=﹣.
∴点Q1的坐标为(3,﹣).
综上所述,点Q的坐标为(3,),Q′(3,)或(3,2)或(3,﹣).