题目内容
【题目】如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示经过原点,给出以下四个结论:①abc=0,②a+b+c>0,③2a>b,④4ac﹣b2<0;其中正确的结论有( )
A. 1个 B. 2个 C. 3个 D. 4个
【答案】C
【解析】
首先根据二次函数y=ax2+bx+c的图象经过原点,可得c=0,所以abc=0;然后根据x=1时,y<0,可得a+b+c<0;再根据图象开口向下,可得a<0,图象的对称轴为x=﹣=﹣,所以b=3a,2a>b;最后根据二次函数y=ax2+bx+c图象与x轴有两个交点,可得△>0,所以b2﹣4ac>0,4ac﹣b2<0,据此解答即可.
∵二次函数y=ax2+bx+c图象经过原点,∴c=0,∴abc=0,故①正确;
∵x=1时,y<0,∴a+b+c<0,故②不正确;
∵抛物线开口向下,∴a<0.
∵抛物线的对称轴是x=﹣,∴﹣=﹣,∴b=3a.
又∵a<0,b<0,∴2a-b=2a-3a=-a>0,∴2a>b,故③正确;
∵二次函数y=ax2+bx+c图象与x轴有两个交点,∴△>0,∴b2﹣4ac>0,4ac﹣b2<0,故④正确;
综上所述:可得正确结论有3个:①③④.
故选C.
练习册系列答案
相关题目