题目内容
【题目】如图,已知AB⊥BC,BC⊥CD,∠1=∠2.试判断BE与CF的关系,并说明你的理由.
解:BE∥CF.
理由:∵AB⊥BC,BC⊥CD(已知)
∴∠ =∠ =90°( )
∵∠1=∠2( )
∴∠ABC﹣∠1=∠BCD﹣∠2,即∠EBC=∠BCF.
∴ ∥ .(____________,______________)
【答案】∠ABC,∠BCD,垂直定义,已知,BE∥CF.
【解析】分析:首先由已知,得,再由已知,根据等式的性质得出,从而判断BE与CF的关系.
本题解析:
理由:∵AB⊥BC,BC⊥CD(已知)
∴∠ABC=∠BCD=90°( 垂直的定义 )
∵∠1=∠2( 已知 )
∴∠ABC﹣∠1=∠BCD﹣∠2,即∠EBC=∠BCF
∴BE∥CF (内错角相等,两直线平行 )
故答案为:∠ABC,∠BCD,垂直定义,已知,BE∥CF.
练习册系列答案
相关题目