题目内容
如图,已知点A (2,4) 和点B (1,0)都在抛物线上.
(1)求m、n;
(2)向右平移上述抛物线,记平移后点A的对应点为A′,点B的对应点为B′,若四边形A A′B′B为菱形,求平移后抛物线的表达式;
(3)记平移后抛物线的对称轴与直线AB′ 的交点为C,试在x轴上找一个点D,使得以点B′、C、D为顶点的三角形与△ABC相似.
(1),4;(2);(3)D(3,0)或(,0).
解析试题分析:(1)已知了抛物线图象上A、B两点的坐标,将它们代入抛物线的解析式中,即可求得m、n的值;(2)根据A、B的坐标,易求得AB的长;根据平移的性质知:四边形A A′B′B一定为平行四边形,若四边形A A′B′B为菱形,那么必须满足AB=BB′,由此可确定平移的距离,根据“左加右减”的平移规律即可求得平移后的抛物线解析式;(3)易求得直线AB′的解析式,联立平移后的抛物线对称轴,可得到C点的坐标,进而可求出AB、BC、AC、B′C的长,在(2)题中已经证得AB=BB′,那么∠BAC=∠BB′C,即A、B′对应,若以点B′、C、D为顶点的三角形与△ABC相似,可分两种情况考虑:①∠B′CD=∠ABC,此时△B′CD∽△ABC,②∠B′DC=∠ABC,此时△B′DC∽△ABC,根据上述两种不同的相似三角形所得不同的比例线段,即可求得不同的BD长,进而可求得D点的坐标.
试题解析:(1)由于抛物线经过A (2,4)和点B (1,0),则有:
,解得.
(2)由(1)得:,
由A (2,4)、B (1,0),根据勾股定理可得,
若四边形A A′B′B为菱形,则AB=BB′=5,即B′(6,0).
故抛物线需向右平移5个单位,即:.
(3)由(2)得:平移后抛物线的对称轴为:x=4,
∵A(2,4),B′(6,0),∴直线AB′:.
当x=4时,y=1,故C(4,1). ∴AC=3,B′C=,BC=.
由(2)知:AB=BB′=5,即∠BAC=∠BB′C.
若以点B′、C、D为顶点的三角形与△ABC相似,则:
①∠B′CD=∠ABC,则△B′CD∽△ABC,可得:,即,∴B′D=3,此时D(3,0);②∠B′DC=∠ABC,则△B′DC∽△ABC,可得:即,∴,此时D(,0).
综上所述,存在符合条件的D点,且坐标为:D(3,0)或(,0).
考点:1.二次函数综合题;2.平移问题;3.曲线上点的坐标与方程的关系;4.勾股定理;5. 菱形的性质;6.等腰三角形的性质;7.相似三角形的判定和性质;8.分类思想的应用.
中秋节期间某水库养殖场为适应市场需求,连续用20天时间,采用每天降低水位以减少捕捞成本的办法,对水库中某种鲜鱼进行捕捞、销售.
九(1)班数学建模兴趣小组根据调查,整理出第x天()的捕捞与销售的相关信息如下:
鲜鱼销售单价(元/kg) | 20 |
单位捕捞成本(元/kg) | |
捕捞量(kg) | 950-10x |
(2)假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出,求第x天的收入y(元)与x(元)之间的函数关系式;(当天收入=日销售额日捕捞成本)
(3)试说明(2)中的函数y随x的变化情况,并指出在第几天y取得最大值,最大值是多少?