题目内容
【题目】如图①,已知直线l1∥l2,且l3和l1,l2分别相交于A,B两点,l4和l1,l2分别交于C,D两点,∠ACP=∠1,∠BDP=∠2,∠CPD=∠3,
点P在线段AB上.
(1)若∠1=22°,∠2=33°,则∠3=________;
(2)试找出∠1,∠2,∠3之间的等量关系,并说明理由;
(3)应用(2)中的结论解答下列问题;
如图②,点A在B处北偏东40°的方向上,在C处的北偏西45°的方向上,求∠BAC的度数;
(4)如果点P在直线l3上且在A,B两点外侧运动时,其他条件不变,试探究∠1,∠2,∠3之间的关系(点P和A,B两点不重合),直接写出结论即可.
【答案】(1)55°;(2)∠1+∠2=∠3;(3)85°;(4)∠CPD=|∠1﹣∠2|.
【解析】试题分析:(1)根据平行线的性质和三角形内角和定理即可求解;
(2)根据平行线的性质和三角形内角和定理即可求解;
(3)过A点作AF∥BD,则AF∥BD∥CE,根据平行线的性质即可求解;
(4)分当P点在A的外侧与当P点在B的外侧两种情况进行分类讨论即可.
试题解析:解:(1)∠1+∠2=∠3.
∵l1∥l2,∴∠1+∠PCD+∠PDC+∠2=180°.在△PCD中,∠3+∠PCD+∠PDC=180°,∴∠3=∠1+∠2=55°.故答案为:55°;
(2)∠1+∠2=∠3.理由如下:
∵l1∥l2,∴∠1+∠PCD+∠PDC+∠2=180°.在△PCD中,∠3+∠PCD+∠PDC=180°,∴∠1+∠2=∠3;
(3)过A点作AF∥BD,则AF∥BD∥CE,则∠BAC=∠DBA+∠ACE=40°+45°=85°;
(4)当P点在A的外侧时,如图2,过P作PF∥l1,交l4于F,∴∠1=∠FPC.
∵l1∥l4,∴PF∥l2,∴∠2=∠FPD.
∵∠CPD=∠FPD﹣∠FPC,∴∠CPD=∠2﹣∠1.
当P点在B的外侧时,如图3,过P作PG∥l2,交l4于G,∴∠2=∠GPD.
∵l1∥l2,∴PG∥l1,∴∠1=∠CPG.
∵∠CPD=∠CPG﹣∠GPD,∴∠CPD=∠1﹣∠2.
综上所述:∠CPD=|∠1﹣∠2|.