题目内容
【题目】已知顶点为A(2,﹣1)的抛物线经过点B(0,3),与x轴交于C、D两点(点C在点D的左侧);
(1)求这条抛物线的表达式;
(2)联结AB、BD、DA,求△ABD的面积;
(3)点P在x轴正半轴上,如果∠APB=45°,求点P的坐标.
【答案】
(1)解:∵顶点为A(2,﹣1)的抛物线经过点B(0,3),
∴可以假设抛物线的解析式为y=a(x﹣2)2﹣1,
把(0,3)代入可得a=1,
∴抛物线的解析式为y=x2﹣4x+3.
(2)解:令y=0,x2﹣4x+3=0,解得x=1或3,
∴C(1,0),D(3,0),
∵OB=OD=3,
∴∠BDO=45°,
∵A(2,﹣1),D(3,0),
∴∠ADO=45°,
∴∠BDA=90°,
∵BD=3 ,AD= ,
∴S△ABD= BDAD=3.
(3)解:∵∠BDO=∠DPB+∠DBP=45°,∠APB=∠DPB+∠DPA=45°,
∴∠DBP=∠APD,
∵∠PDB=∠ADP=135°,
∴△PDB∽△ADP,
∴PD2=BDAD=3 =6,
∴PD= ,
∴OP=3+ ,
∴点P(3+ ,0).
【解析】(1)设抛物线的解析式为y=a(x﹣2)2﹣1,把(0,3)代入可得a=1,即可解决问题.(2)首先证明∠ADB=90°,求出BD、AD的长即可解决问题.(3)由△PDB∽△ADP,推出PD2=BDAD=3 =6,由此即可解决问题.
【考点精析】关于本题考查的抛物线与坐标轴的交点,需要了解一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.才能得出正确答案.