题目内容
【题目】如图,在三角形ABC中, D,E,F三点分别在AB,AC,BC上,过点D的直线与线段EF的交点为点M,已知2∠1-∠2=150°,2∠ 2-∠1=30°.
(1)求证:DM∥AC;
(2)若DE∥BC,∠C =50°,求∠3的度数.
【答案】(1)证明见解析(2)50°
【解析】试题分析:(1) 已知 2∠1-∠2=150°,2∠2-∠1=30°,可得∠1+∠2=180°,再由∠1+∠DME=180°,可得∠2=∠DME,根据内错角相等,两直线平行即可得DM∥AC;(2) 由(1)得DM∥AC,根据两直线平行,内错角相等可得∠3=∠AED ,再由DE∥BC ,可得∠AED=∠C ,所以∠3=∠C 50°.
试题解析:
(1)∵ 2∠1-∠2=150°,2∠2-∠1=30°,
∴ ∠1+∠2=180°.
∵ ∠1+∠DME=180°,
∴ ∠2=∠DME .
∴ DM∥AC .
(2)∵ DM∥AC,
∴ ∠3=∠AED .
∵ DE∥BC ,
∴ ∠AED=∠C .
∴ ∠3=∠C .
∵ ∠C=50°,
∴ ∠3=50°.
练习册系列答案
相关题目