题目内容
如图,四边形ABCD的顶点在⊙O上,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分∠BDE.(1)求证:AE是⊙O的切线;
(2)若DE=4,AD=6,求⊙O半径.
分析:(1)证明OA⊥AE就能得到AE是⊙O的切线;
(2)通过证明Rt△BAD∽Rt△AED,再利用对应边成比例关系从而求出⊙O半径的长.
(2)通过证明Rt△BAD∽Rt△AED,再利用对应边成比例关系从而求出⊙O半径的长.
解答:(1)证明:连接OA.
∵AO=DO,
∴∠OAD=∠ODA.(1分)
∵DA平分∠BDE,
∴∠ODA=∠EDA,
∴∠OAD=∠EDA.(1分)
∵∠EAD+∠EDA=90°,
∴∠EAD+∠OAD=90°,即∠OAE=90°.(1分)
∴OA⊥AE,
∴AE是⊙O的切线.(1分)
(2)解:∵BD是⊙O的直径,
∴∠BAD=90°,
∵∠AED=90°,∠ADE=∠ADB,(1分)
∴Rt△BAD∽Rt△AED.(1分)
∴
=
.(1分)
∴BD=
=
=9,
即⊙O是半径为4.5.(1分)
∵AO=DO,
∴∠OAD=∠ODA.(1分)
∵DA平分∠BDE,
∴∠ODA=∠EDA,
∴∠OAD=∠EDA.(1分)
∵∠EAD+∠EDA=90°,
∴∠EAD+∠OAD=90°,即∠OAE=90°.(1分)
∴OA⊥AE,
∴AE是⊙O的切线.(1分)
(2)解:∵BD是⊙O的直径,
∴∠BAD=90°,
∵∠AED=90°,∠ADE=∠ADB,(1分)
∴Rt△BAD∽Rt△AED.(1分)
∴
DE |
AD |
AD |
BD |
∴BD=
AD2 |
DE |
62 |
4 |
即⊙O是半径为4.5.(1分)
点评:主要考查学生对相似三角形的判定及性质的运用,及切线的求法等知识点的掌握情况.
练习册系列答案
相关题目