题目内容

【题目】如图的△ABC中有一正方形DEFG,其中D在AC上,E、F在AB上,直线AG分别交DE、BC于M、N两点.若∠B=90°,AB=4,BC=3,EF=1,则BN的长度为何?(
A.
B.
C.
D.

【答案】D
【解析】解:∵四边形DEFG是正方形, ∴DE∥BC,GF∥BN,且DE=GF=EF=1,
∴△ADE∽△ACB,△AGF∽△ANB,
①, ②,
由①可得, ,解得:AE=
将AE= 代入②,得:
解得:BN=
故选:D.
【考点精析】关于本题考查的正方形的性质和相似三角形的判定与性质,需要了解正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形;相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网