题目内容

【题目】如图,已知圆内接四边形ABCD的对角线AC、BD交于点N,点M在对角线BD上,且满足∠BAM=∠DAN,∠BCM=∠DCN.

求证:(1MBD的中点;(2 .

【答案】(1)证明见解析;(2)证明见解析.

【解析】试题分析:(1)要证MBD的中点,即证BM=DM,由∠BAM=DAN,BCM=DCN,及圆周角的性质易证明△BAM∽△CBM,DAM∽△CDM得出比例的乘积形式,可证明BM=DM;

2欲证,可以通过平行线的性质证明,需要延长AM交圆于点P,连接CP,证明PCBD,得出比例式,相应解决MP=CM的问题即可.

试题解析:(1)根据同弧所对的圆周角相等,得∠DAN=∠DBC,∠DCN=∠DBA,

又∵∠DAN=∠BAM,∠BCM=∠DCN,

∴∠BAM=∠MBC,∠ABM=∠BCM,

∴△BAM∽△CBM,

,即BM2=AMCM ,

又∠DCM=∠DCN+∠NCM=∠BCM+∠NCM=∠ACB=∠ADB,

∠DAM=∠MAC+∠DAN=∠MAC+∠BAM=∠BAC=∠CDM,

∴△DAM∽△CDM,

,即DM2=AMCM ,

由式①、②得:BM=DM,

MBD的中点

(2)如图,延长AM交圆于点P,连接CP,

∴∠BCP=∠PAB=∠DAC=∠DBC,

∵PC∥BD,

,

又∵∠MCB=∠DCA=∠ABD,∠DBC=∠PCB,

∴∠ABC=∠MCP,

而∠ABC=∠APC,

则∠APC=∠MCP,

MP=CM,④

由式③、④得:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网