题目内容
如图,点E、D分别是正三角形ABC、正四边形ABCM、正五边形ABCMN中以C点为顶点的一边延长线和另一边反向延长线上的点,且BE=CD,DB的延长线交AE于点F,则图1中∠AFB的度数为 ;若将条件“正三角形、正四边形、正五边形”改为“正n边形”,其他条件不变,则∠AFB的度数为 .(用n的代数式表示,其中,≥3,且为整数)
60°,
分别求出正三角形、正四边形、正五边形时∠AFB的度数,找出规律即可解答.
解:(1)在正△ABC中,AB=BC,∠ABC=∠ACB=60°
∴∠ABE=∠BCD=120°,
又∵BE=CD,
∴△ABE≌△BCD,
∴∠E=∠D
又∵∠FBE=∠CBD,
∴∠AFB=∠E+∠FBE=∠D+∠CBD=∠ACB=60°
(2)由以上不难得:△AEB≌△BDC进一步证出,△BEF∽△BDC,
得出,∠AFB的度数等于∠DCB=90°,同理可得:∠AFB度数为108°
(3)由正三角形、正四边形、正五边形时,∠AFB的度数分别为60°,90°,108°,可得出“正n边形”,其它条件不变,则∠AFB度数为.
故填:60°;.
解:(1)在正△ABC中,AB=BC,∠ABC=∠ACB=60°
∴∠ABE=∠BCD=120°,
又∵BE=CD,
∴△ABE≌△BCD,
∴∠E=∠D
又∵∠FBE=∠CBD,
∴∠AFB=∠E+∠FBE=∠D+∠CBD=∠ACB=60°
(2)由以上不难得:△AEB≌△BDC进一步证出,△BEF∽△BDC,
得出,∠AFB的度数等于∠DCB=90°,同理可得:∠AFB度数为108°
(3)由正三角形、正四边形、正五边形时,∠AFB的度数分别为60°,90°,108°,可得出“正n边形”,其它条件不变,则∠AFB度数为.
故填:60°;.
练习册系列答案
相关题目