题目内容
【题目】在Rt△ABC中,∠C=90°,Rt△ABC绕点A顺时针旋转到Rt△ADE的位置,点E在斜边AB上,连结BD,过点D作DF⊥AC于点F.
(1)如图1,若点F与点A重合,求证:AC=BC;
(2)若∠DAF=∠DBA,①如图2,当点F在线段CA的延长线上时,判断线段AF与线段BE的数量关系,并说明理由;
②当点F在线段CA上时,设BE=x,请用含x的代数式表示线段AF.
【答案】(1)证明见解析;(2)①AF=BE;②AF=x.
【解析】
试题分析:(1)由旋转得到∠BAC=∠BAD,而DF⊥AC,从而得出∠ABC=45°,最后判断出△ABC是等腰直角三角形;
(2)①由旋转得到∠BAC=∠BAD,再根据∠DAF=∠DBA,从而求出∠FAD=∠BAC=∠BAD=60°,最后判定△AFD≌△BED,即可;
②根据题意画出图形,先求出角度,得到△ABD是顶角为36°的等腰三角形,再用相似求出,=,最后判断出△AFD∽△BED,代入即可.
试题解析:(1)由旋转得,∠BAC=∠BAD,∵DF⊥AC,∴∠CAD=90°,∴∠BAC=∠BAD=45°,∵∠ACB=90°,∴∠ABC=45°,∴AC=CB;
(2)①由旋转得,AD=AB,∴∠ABD=∠ADB,∵∠DAF=∠ABD,∴∠DAF=∠ADB,∴AF∥BB,∴∠BAC=∠ABD,∵∠ABD=∠FAD
由旋转得,∠BAC=∠BAD,∴∠FAD=∠BAC=∠BAD=×180°=60°,由旋转得,AB=AD,∴△ABD是等边三角形,∴AD=BD,在△AFD和△BED中,∵∠F=∠BED,∠FAD=∠BED,AD=BD,∴△AFD≌△BED,∴AF=BE;
②如图,由旋转得,∠BAC=∠BAD,∵∠ABD=∠FAD=∠BAC+∠BAD=2∠BAD,由旋转得,AD=AB,∴∠ABD=∠ADB=2∠BAD,∵∠BAD+∠ABD+∠ADB=180°,∴∠BAD+2∠BAD+2∠BAD=180°,∴∠BAD=36°,设BD=x,作BG平分∠ABD,∴∠BAD=∠GBD=36°,∴AG=BG=BC=x,∴DG=AD﹣AG=AD﹣BG=AD﹣BD,∵∠BDG=∠ADB,∴△BDG∽△ADB,∴,∴,∴=,∵∠FAD=∠EBD,∠AFD=∠BED,∴△AFD∽△BED,∴,∴AF==x.
【题目】为了解某校计算机考试情况,抽取了50名学生的计算机考试成绩进行统计,统计结果如表所示,则50名学生计算机考试成绩的众数、中位数分别为( )
考试分数(分) | 20 | 16 | 12 | 8 |
人数 | 24 | 18 | 5 | 3 |
A. 20,16B. l6,20C. 20,l2D. 16,l2
【题目】七年级1班甲、乙两个小组的14名同学身高(单位:厘米)如下:
甲组 | 158 | 159 | 160 | 160 | 160 | 161 | 169 |
乙组 | 158 | 159 | 160 | 161 | 161 | 163 | 165 |
以下叙述错误的是( )
A. 甲组同学身高的众数是160 B. 乙组同学身高的中位数是161
C. 甲组同学身高的平均数是161 D. 两组相比,乙组同学身高的方差大