题目内容
【题目】在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A、B,C,已知A(﹣1,0),C(0,3).
(1)求抛物线的解析式;
(2)如图1,P为线段BC上一动点,过点P作y轴的平行线,交抛物线于点D,是否存在这样的P点,使线段PD的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;
(3)如图2,抛物线的顶点为E,EF⊥x轴于点F,N是直线EF上一动点,M(m,0)是x轴一个动点,请直接写出CN+MN+MB的最小值以及此时点M、N的坐标,直接写出结果不必说明理由.
【答案】(1)y=﹣x2+2x+3;(2)存在,PD最大值为;(3)
,N(1,
),M(
,0).
【解析】
(1)y=﹣x2+bx+c经过点C,则c=3,将点A的坐标代入抛物线表达式:y=﹣x2+bx+3,即可求解;
(2)设点D(x,﹣x2+2x+3),则点P(x,﹣x+3),则PD=(﹣x2+2x+3)﹣(﹣x+3)=﹣x2+3x,即可求解;
(3)过点B作倾斜角为30°的直线BH,过点C作CH⊥BH交于点H,CH交对称轴于点N,交x轴于点M,则点M、N为所求,即可求解.
(1)y=﹣x2+bx+c经过点C,则c=3,
将点A的坐标代入抛物线表达式:y=﹣x2+bx+3,得:0=-1-b+3,解得:b=2,
抛物线的表达式为:y=﹣x2+2x+3;
(2)存在,理由:
令y=0,得:﹣x2+2x+3=0,解得:x=﹣1或3,故点B(3,0),
设直线BC为y=kx+b,将点B、C的坐标代入得:
,解得:
.
∴直线BC的表达式为:y=﹣x+3,
设点D(x,﹣x2+2x+3),则点P(x,﹣x+3),
则PD=(﹣x2+2x+3)﹣(﹣x+3)=﹣x2+3x=,
当x时,PD最大值为:
;
(3)过点B作倾斜角为30°的直线BH,过点C作CH⊥BH交于点H,CH交对称轴于点N,交x轴于点M,则点M、N为所求.
∵∠ABH=30°,∠MHB=90°,∴∠CMO=∠BMH=90°-30°=60°.
∵∠COB=90°,∴∠COM=30°,∴OC=OM.
∵OC=3,∴OM=,
∴M(,0),CM=2OM=
,MF=OM-OF=
,MB=OB-OM=
.
∵∠FMN=60°,∴tan∠FMN=,∴
,
∴NF=,∴N(1,
).
CN+MNMB的最小值=CM
MB=
.
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】2019年3月19日,河南省教育厅发布《关于推进中小学生研学旅行的实施方案》,某中学为落实方案,给学生提供了以下五种主题式研学线路:A.“红色河南”,B.“厚重河南”C.“出彩河南”,D.“生态河南”,E.“老家河南”为了解学生最喜欢哪一种研学线路(每人只选取一种),随机抽取了部分学生进行调查,将调查结果绘制成如下不完整的统计表和统计图.根据以上信息解答下列问题:
调查结果统计表
主题 | 人数/人 | 百分比 |
A | 75 | n% |
B | m | 30% |
C | 45 | 15% |
D | 60 | |
E | 30 |
(1)本次接受调查的总人数为 人,统计表中m= ,n= .
(2)补全条形统计图.
(3)若把条形统计图改为扇形统计图,则“生态河南”主题线路所在扇形的圆心角度是 .
(4)若该实验中学共有学生3000人,请据此估计该校最喜欢“老家河南”主题线路的学生有多少人.