题目内容
【题目】数学课上,小白遇到这样一个问题:
如图1,在等腰中,,,,求证;
在此问题的基础上,老师补充:
过点作于点交于点,过作交于点,交于点,试探究线段,,之间的数量关系,并说明理由.
小白通过研究发现,与有某种数量关系;
小明通过研究发现,将三条线段中的两条放到同一条直线上,即“截长补短”,再通过进一步推理,可以得出结论.
阅读上面材料,请回答下面问题:
(1)求证;
(2)猜想与的数量关系,并证明;
(3)探究线段,,之间的数量关系,并证明.
【答案】(1)见解析;(2),证明见解析;(3),证明见解析
【解析】
(1)利用SAS证明可得结论;
(2)设,推出,,即可证明;
(3)过点作交延长线于点,延长交于点,证明△ABE≌△CAM,得出和,从而证明△NFC≌△MFC,得到和,可得PN=PE,从而得出BP=AF+PF.
解:(1)∵在△ABE和△ACD中,
,
(SAS),
;
(2)设,
,
,
,
,
,
,
,
;
(3)过点作交延长线于点,延长交于点,
,,
,
在△ABE和△CAM中,
,
(ASA),
,,
,,,
(ASA),
,,
,
,
∴.
练习册系列答案
相关题目