题目内容
如图1,AB∥CD,EOF是直线AB、CD间的一条折线.
(1)说明:∠O=∠BEO+∠DFO.
(2)如图2,如果将折一次改为折二次,如图2,则∠BEO、∠O、∠P、∠PFC会满足怎样的关系,证明你的结论.
(3)若将折线继续折下去,折三次,折四次折n次,又会得到怎样的结论?(不需证明)
(1)说明:∠O=∠BEO+∠DFO.
(2)如图2,如果将折一次改为折二次,如图2,则∠BEO、∠O、∠P、∠PFC会满足怎样的关系,证明你的结论.
(3)若将折线继续折下去,折三次,折四次折n次,又会得到怎样的结论?(不需证明)
(1)通过证明两直线分别与第三直线平行的性质证明三线平行,证出内错角相等。
(2)可证明∠BEO+OPF=∠EOP+∠PFC(3)如果两平行线间存在一条折线,则所有同向角的和相等。或者:向左凸出的角的和等于向右面凸出的角的和
(2)可证明∠BEO+OPF=∠EOP+∠PFC(3)如果两平行线间存在一条折线,则所有同向角的和相等。或者:向左凸出的角的和等于向右面凸出的角的和
试题分析:(1)证明:过O作OM∥AB,
∵AB∥CD,
∴AB∥OM∥CD,
∴∠BEO=∠MOE,∠DFO=∠MOF,
∴∠BEO+∠DFO=∠EOM+∠FOM,
即∠EOF=∠BEO+∠DFO.
(2)满足的关系式是:∠BEO+∠P=∠O+∠PFC,
解:过O作OM∥AB,PN∥AB,
∵AB∥CD,
∴AB∥OM∥PN∥CD,
∴∠BEO=∠EOM,∠PFC=∠NPF,∠MOP=∠NPO,
∴∠EOP﹣∠OPF=(∠EOM+∠MOP)﹣(∠OPN+∠NPF)=∠EOM﹣∠NPF,
∠BEO﹣∠PFC=∠EOM﹣∠NPF,
∴∠BEO﹣∠PFC=∠EOP﹣∠OPF,
∴∠BEO+OPF=∠EOP+∠PFC.
(3)解:如果两平行线间存在一条折线,则所有同向角的和相等。
或者:向左凸出的角的和等于向右面凸出的角的和
点评:本题难度较大,主要考查学生对平行线性质与判定的运用,为中考几何问题中常见题型,学生要牢固掌握。注意培养数形结合的思想,并运用到实际考试中。
练习册系列答案
相关题目