题目内容
【题目】如图,在等腰△ABC中,AB=AC,DE垂直平分AB,分别交AB,AC于点E,D.
(1)若∠ADE=40°,求∠DBC的度数;
(2)若BC=6,△CDB的周长为15,求AB的长.
【答案】(1)∠DBC=15°;(2)AB=9.
【解析】
(1)由DE垂直平分AB,根据线段垂直平分线的性质,可得∠AED=∠BED=90°,DA=DB,又由∠ADE=40°,即可求得∠ABD的度数,又由AB=AC,即可求得∠ABC的度数,继而求得答案;
(2)由已知条件,运用线段垂直平分线定理得到AD=CD,结合BC=6,△CDB的周长为15,求AB即可
解:(1)∵DE垂直平分AB,
∴∠AED=∠BED=90°,DA=DB,
∵∠ADE=40°,
∴∠A=∠ABD=50°,
又∵AB=AC,
∴∠ABC=(180°﹣50°)÷2=65°,
∴∠DBC=∠ABC﹣∠ABD=65°﹣50°=15°;
(2)∵DE垂直且平分AC,
∴AD=CD,
△BDC的周长=BC+BD+CD=15,
又∵BC=6,
∴AB=AC=9.
练习册系列答案
相关题目