题目内容
如图,已知等边△ABC和点P,设点P到△ABC三边AB、AC、BC(或其延长线)的距离分别为h1、h2、h3,△ABC的高为h.
在图(1)中,点P是边BC的中点,此时h3=0,可得结论:h1+h2+h3=h.
在图(2),(3),(4),(5)中,点P分别在线段MC上、MC延长线上、△ABC内、△ABC外.
(1)请探究:图(2),(3),(4),(5)中,h1、h2、h3、h之间的关系;(直接写出结论)图②-⑤中的关系依次是:
h1+h2+h3=h;h1-h2+h3=h;h1+h2+h3=h;h1+h2-h3=h;
(2)证明图(2)所得结论;
(3)证明图(4)所得结论;
(4)(附加题2分)在图(6)中,若四边形RBCS是等腰梯形,∠B=∠C=60°,RS=n,BC=m,点P在梯形内,且点P到四边BR、RS、SC、CB的距离分别是h1、h2、h3、h4,桥形的高为h,则h1、h2、h3、h4、h之间的关系为:h1+h3+h4=
.图(4)与图(6)中的等式有何关系.
在图(1)中,点P是边BC的中点,此时h3=0,可得结论:h1+h2+h3=h.
在图(2),(3),(4),(5)中,点P分别在线段MC上、MC延长线上、△ABC内、△ABC外.
(1)请探究:图(2),(3),(4),(5)中,h1、h2、h3、h之间的关系;(直接写出结论)图②-⑤中的关系依次是:
h1+h2+h3=h;h1-h2+h3=h;h1+h2+h3=h;h1+h2-h3=h;
(2)证明图(2)所得结论;
(3)证明图(4)所得结论;
(4)(附加题2分)在图(6)中,若四边形RBCS是等腰梯形,∠B=∠C=60°,RS=n,BC=m,点P在梯形内,且点P到四边BR、RS、SC、CB的距离分别是h1、h2、h3、h4,桥形的高为h,则h1、h2、h3、h4、h之间的关系为:h1+h3+h4=
mh |
m-n |
(1)图②-⑤中的关系依次是:
h1+h2+h3=h;h1-h2+h3=h;h1+h2+h3=h;h1+h2-h3=h;(4分)
(2)图②中,h1+h2+h3=h.
证法一:
∵h1=BPsin60°,h2=PCsin60°,h3=0,(6分)
∴h1+h2+h3=BPsin60°+PCsin60°
=BCsin60°
=ACsin60°
=h.(8分)
证法二:连接AP,则S△APB+S△APC=S△ABC.(6分)
∴
AB×h1+
AC×h2=
BC×h.
又h3=0,AB=AC=BC,
∴h1+h2+h3=h;(8分)
证明:(3)图④中,h1+h2+h3=h.
过点P作RS∥BC与边AB、AC相交于R、S.(9分)在△ARS中,由图②中结论知:h1+h2+0=h-h3.
∴h1+h2+h3=h.(10分)
说明:(2)与(3)问,通过作辅助线,利用证全等三角形的方法类似给分;
(4)由(3)可知:h1+h3+h4=
.(11分)
让R、S延BR、CS延长线向上平移,当n=0时,图⑥变为图④,上面的等式就是图④中的等式,所以上面结论是图④中结论的推广.(12分)
h1+h2+h3=h;h1-h2+h3=h;h1+h2+h3=h;h1+h2-h3=h;(4分)
(2)图②中,h1+h2+h3=h.
证法一:
∵h1=BPsin60°,h2=PCsin60°,h3=0,(6分)
∴h1+h2+h3=BPsin60°+PCsin60°
=BCsin60°
=ACsin60°
=h.(8分)
证法二:连接AP,则S△APB+S△APC=S△ABC.(6分)
∴
1 |
2 |
1 |
2 |
1 |
2 |
又h3=0,AB=AC=BC,
∴h1+h2+h3=h;(8分)
证明:(3)图④中,h1+h2+h3=h.
过点P作RS∥BC与边AB、AC相交于R、S.(9分)在△ARS中,由图②中结论知:h1+h2+0=h-h3.
∴h1+h2+h3=h.(10分)
说明:(2)与(3)问,通过作辅助线,利用证全等三角形的方法类似给分;
(4)由(3)可知:h1+h3+h4=
mh |
m-n |
让R、S延BR、CS延长线向上平移,当n=0时,图⑥变为图④,上面的等式就是图④中的等式,所以上面结论是图④中结论的推广.(12分)
练习册系列答案
相关题目