题目内容
如图,在平行四边形ABCD中,AD>AB.
(1)作出∠ABC的平分线(尺规作图,保留作图痕迹,不写作法);
(2)若(1)中所作的角平分线交AD于点E,AF⊥BE,垂足为点O,交BC于点F,连接EF.求证:四边形ABFE为菱形.
解:(1)如图所示:
(2)首先根据角平分线的性质以及平行线的性质得出∠ABE=∠AEB,进而得出△ABO≌△FBO,进而利用AF⊥BE,BO=EO,AO=FO,得出即可。
解析分析:(1)根据角平分线的作法作出∠ABC的平分线即可。
(2)首先根据角平分线的性质以及平行线的性质得出∠ABE=∠AEB,进而得出△ABO≌△FBO,进而利用AF⊥BE,BO=EO,AO=FO,得出即可。
解:(1)如图所示:
(2)证明:∵BE平分∠ABC,∴∠ABE=∠EAF。
∵∠EBF=∠AEB,∴∠ABE=∠AEB。∴AB=AE。
∵AO⊥BE,∴BO=EO。
∵在△ABO和△FBO中,∠ABO=∠FBO ,BO=EO,∠AOB=∠FOB,
∴△ABO≌△FBO(ASA)。∴AO=FO。
∵AF⊥BE,BO=EO,AO=FO。∴四边形ABFE为菱形。
练习册系列答案
相关题目
如图,平行四边形ABCD中,F是CD上一点,BF交AD的延长线于G,则图中的相似三角形对数共有( )
A.8对; | B.6对; | C.4对; | D.2对. |
如图所示的两个三角形是位似图形,它们的位似中心是
A.点O | B.点P | C.点M | D.点N |
以下是甲、乙、丙三人看地图时对四个坐标的描述:
甲:从学校向北直走500米,再向东直走100米可到图书馆.
乙:从学校向西直走300米,再向北直走200米可到邮局.
丙:邮局在火车站西200米处.
根据三人的描述,若从图书馆出发,判断下列哪一种走法,其终点是火车站( )
A.向南直走300米,再向西直走200米 |
B.向南直走300米,再向西直走100米 |
C.向南直走700米,再向西直走200米 |
D.向南直走700米,再向西直走600米 |