题目内容
【题目】如图,在正方形ABCD和正方形DEFG中,点G在CD上,DE=2,将正方形DEFG绕点D顺时针旋转60°,得到正方形DE'F'G',此时点G'在AC上,连接CE',则CE'+CG'=______
【答案】
【解析】
作G′R⊥BC于R,则四边形RCIG′是正方形.首先证明点F′在线段BC上,再证明CH=HE′即可解决问题.
作G′R⊥BC于R,则四边形RCIG′是正方形.
∵∠DG′F′=∠IG′R=90°,
∴∠DG′I=∠RG′F′,
在△G′ID和△G′RF中
,
∴△G′ID≌△G′RF,
∴∠G′ID=∠G′RF′=90°,
∴点F′在线段BC上,
在Rt△E′F′H中,∵E′F′=2,∠E′F′H=30°,
∴E′H=E′F′=1,F′H=
,
易证△RG′F′≌△HF′E′,
∴RF′=E′H,RG′=RC=F′H,
∴CH=RF′=E′H,
∴CE′=,
∵RG′=HF′=,
∴CG′=RG′=
,
∴CE′+CG′=+
.
故答案为:+
.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目