题目内容
【题目】如图,矩形ABCO的顶点B(10,8),点A,C在坐标轴上,E是BC边上一点,将△ABE沿AE折叠,点B刚好与OC边上点D重合,过点E的反比例函数y=的图象与边AB交于点F,则线段BF的长为_____.
【答案】
【解析】
首先根据翻折变换的性质,可得AD=AB=10,DE=BE;然后设点E的坐标是(10,b),在Rt△CDE中,根据勾股定理,求出CE的长度,进而求出k的值,再把F点的纵坐标代入解析式可求得F点的坐标,即可求得BF的长.
∵△ABE沿AE折叠,点B刚好与OC边上点D重合,
∴AD=AB=10,DE=BE,
∵AO=8,AD=10,
∴OD==6,
∴CD=10-6=4,
设点E的坐标是(10,b),
则CE=b,DE=10-b,
∵CD2+CE2=DE2,
∴42+b2=(8-b)2,
解得b=3,
∴点E的坐标是(10,3),
设反比例函数y=,
∴k=10×3=30,
∴反比例函数解析式为y=,
∵F点纵坐标为8,
∴8=,解得x=,即AF=,
∴BF=AB-AF=10-=,
故答案为:.
练习册系列答案
相关题目