题目内容
【题目】在△ABC中,AB=AC=5,sinB=,⊙O过点B、C两点,且⊙O半径r=,则OA的长为_____.
【答案】3或5
【解析】
作AD⊥BC于D,由于AB=AC=5,根据等腰三角形的性质得AD垂直平分BC,根据垂径定理的推论得到点O在直线AD上,连结OB,在Rt△ABD中,根据正弦的定义计算出AD=4,根据勾股定理计算出BD=3,再在Rt△OBD中,根据勾股定理计算出OD=1,然后分类讨论:①当点A与点O在BC的两侧,有OA=AD+OD;②当点A与点O在BC的同侧,有OA=AD﹣OD,即求得OA的长.
解:如图,作AD⊥BC于D,
∵AB=AC=5,
∴AD垂直平分BC,
∴点O在直线AD上,
连结OB,
在Rt△ABD中,sin∠ABD==,
∵AB=5,∴AD=4,
∴BD===3,
在Rt△OBD中,OB=,BD=3,
∴OD==1,
当点A与点O在BC的两侧时,如图1,OA=AD+OD=4+1=5;
当点A与点O在BC的同侧时,如图2,OA=AD﹣OD=4﹣1=3,
故OA的长为3或5.
故答案为:3或5.
练习册系列答案
相关题目
【题目】今年,号称“千湖之省”的湖北正遭受大旱,为提高学生环境意识,节约用水,某校数学教师编制了一道应用题:为了保护水资源,某市制定一套节水的管理措施,其中对居民生活用水收费作如下规定:
月用水量(吨) | 单价(元/吨) |
不大于10吨部分 | 1.5 |
大于10吨不大于m吨部分(20≤m≤50) | 2 |
大于m吨部分 | 3 |
(1)若某用户六月份用水量为18吨,求其应缴纳的水费;
(2)记该用户六月份用水量为吨,缴纳水费为元,试列出与的函数式;
(3)若该用户六月份用水量为40吨,缴纳水费元的取值范围为,试求的取值范围.
各位同学,请你也认真做一做,相信聪明的你一定会顺利完成.